Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.999
Filtrar
1.
Commun Biol ; 7(1): 190, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38365890

RESUMO

Enzymatic dissociation of human pluripotent stem cells (hPSCs) into single cells during routine passage leads to massive cell death. Although the Rho-associated protein kinase inhibitor, Y-27632 can enhance hPSC survival and proliferation at high seeding density, dissociated single cells undergo apoptosis at clonal density. This presents a major hurdle when deriving genetically modified hPSC lines since transfection and genome editing efficiencies are not satisfactory. As a result, colonies tend to contain heterogeneous mixtures of both modified and unmodified cells, making it difficult to isolate the desired clone buried within the colony. In this study, we report improved clonal expansion of hPSCs using a retinoic acid analogue, TTNPB. When combined with Y-27632, TTNPB synergistically increased hPSC cloning efficiency by more than 2 orders of magnitude (0.2% to 20%), whereas TTNPB itself increased more than double cell number expansion compared to Y-27632. Furthermore, TTNPB-treated cells showed two times higher aggregate formation and cell proliferation compared to Y-27632 in suspension culture. TTNPB-treated cells displayed a normal karyotype, pluripotency and were able to stochastically differentiate into all three germ layers both in vitro and in vivo. TTNBP acts, in part, by promoting cellular adhesion and self-renewal through the upregulation of Claudin 2 and HoxA1. By promoting clonal expansion, TTNPB provides a new approach for isolating and expanding pure hPSCs for future cell therapy applications.


Assuntos
Benzoatos , Células-Tronco Pluripotentes , Piridinas , Humanos , Amidas/farmacologia , Claudinas/metabolismo , Células-Tronco Pluripotentes/efeitos dos fármacos , Retinoides/farmacologia , Retinoides/metabolismo
2.
Bioorg Chem ; 145: 107227, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38387400

RESUMO

Multidrug-resistant (MDR) pathogens are severely impacting our ability to successfully treat common infections. Here we report the synthesis of a panel of adarotene-related retinoids showing potent antimicrobial activity on Staphylococcus aureus strains (including multidrug-resistant ones). Fluorescence and molecular dynamic studies confirmed that the adarotene analogues were able to induce conformational changes and disfunctions to the cell membrane, perturbing the permeability of the phospholipid bilayer. Since the major obstacle for developing retinoids is their potential cytotoxicity, a selected candidate was further investigated to evaluate its activity on a panel of human cell lines. The compound was found to be well tolerated, with IC50 5-15-fold higher than the MIC on S. aureus strains. Furthermore, the adarotene analogue had a good pharmacokinetic profile, reaching a plasma concentration of about 6 µM after 0.5 h after administration (150 mg/kg), at least twice the MIC observed against various bacterial strains. Moreover, it was demonstrated that the compound potentiated the growth-inhibitory effect of the poorly bioavailable rifaximin, when used in combination. Overall, the collected data pave the way for the development of synthetic retinoids as potential therapeutics for hard-to-treat infectious diseases caused by antibiotic-resistant Gram-positive pathogens.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Humanos , Staphylococcus aureus , Antibacterianos , Retinoides/farmacologia , Infecções Estafilocócicas/tratamento farmacológico , Testes de Sensibilidade Microbiana
3.
Toxicol Sci ; 198(2): 246-259, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38237923

RESUMO

Early developmental exposure to environmental toxicants may play a role in the risk for developing autism. A variety of pesticides have direct effects on retinoic acid (RA) signaling and as RA signaling has important roles in neurodevelopment, such compounds may cause developmental neurotoxicity through an overlapping adverse outcome pathway. It is hypothesized that a pesticide's embryonic effects on retinoid function may correspond with neurobehavioral disruption later in development. In the current studies, we determined the effects of RA-acting pesticides on neurobehavioral development in zebrafish. Buprofezin and imazalil caused generalized hypoactivity in the larval motility test, whereas chlorothalonil and endosulfan I led to selective hypoactivity and hyperactivity, respectively. With buprofezin, chlorothalonil, and imazalil, hypoactivity and/or novel anxiety-like behaviors persisted in adulthood and buprofezin additionally decreased social attraction responses in adulthood. Endosulfan I did not produce significant adult behavioral effects. Using qPCR analyses of adult brain tissue, we observed treatment-induced alterations in RA synthesis or catabolic genes, indicating persistent changes in RA homeostasis. These changes were compound-specific, with respect to expression directionality, and potential patterns of homeostatic disruption. Results suggest the likely persistence of disruptions in RA signaling well into adulthood and may represent compensatory mechanisms following early life stage exposures. This study demonstrates that early developmental exposure to environmental toxicants that interfere with RA signaling causes short as well as long-term behavioral disruption in a well-established zebrafish behavioral model and expand upon the meaning of the RA adverse outcome pathway, indicating that observed effects likely correspond with the nature of underlying homeostatic effects.


Assuntos
Nitrilas , Praguicidas , Tiadiazinas , Peixe-Zebra , Animais , Tretinoína/toxicidade , Retinoides/farmacologia , Praguicidas/metabolismo , Endossulfano , Comportamento Animal
4.
Cancer Gene Ther ; 31(4): 537-551, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38233533

RESUMO

The highly mutated nature of bladder cancers harboring mutations in chromatin regulatory genes opposing Polycomb-mediated repression highlights the importance of targeting EZH2 in bladder cancer. Furthermore, the critical role of the retinoic acid signaling pathway in the development and homeostasis of the urothelium, and the anti-oncogenic effects of retinoids are well established. Therefore, our aim is to simultaneously target EZH2 and retinoic acid signaling in bladder cancer to potentiate the therapeutic response. Here we report that this coordinated targeting strategy stimulates an anti-oncogenic profile, as reflected by inducing a synergistic reduction in cell viability that was associated with increased apoptosis and cell cycle arrest in a cooperative and orchestrated manner. This study characterized anti-oncogenic transcriptional reprogramming centered on the transcriptional regulator CHOP by stimulating the endoplasmic reticulum stress response. We further portrayed a molecular mechanism whereby EZH2 maintains H3K27me3-mediated repression of a subset of genes involved in unfolded protein responses, reflecting the molecular mechanism underlying this co-targeting strategy. These findings highlight the importance of co-targeting the EZH2 and retinoic acid pathway in bladder cancers and encourage the design of novel treatments employing retinoids coupled with EZH2 inhibitors in bladder carcinoma.


Assuntos
Neoplasias da Bexiga Urinária , Bexiga Urinária , Humanos , Bexiga Urinária/patologia , Retinoides/farmacologia , Retinoides/uso terapêutico , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/patologia , Linhagem Celular Tumoral , Tretinoína/farmacologia , Tretinoína/uso terapêutico , Regulação Neoplásica da Expressão Gênica
5.
Int J Mol Sci ; 24(22)2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-38003656

RESUMO

Retinoic acid (RA) exerts pleiotropic effects during neural development and regulates homeostasis in the adult human brain. The RA signal may be transduced through RXR (retinoid-X receptor)-non-permissive RA receptor/RXR heterodimers or through RXR-permissive RXR heterodimers. The significance of RA signaling in malignant brain tumors such as glioblastoma multiforme (GBM) and gliosarcoma (GS) is poorly understood. In particular, the impact RA has on the proliferation, survival, differentiation, or metabolism of GBM- or GS-derived cells with features of stem cells (SLGCs) remains elusive. In the present manuscript, six GBM- and two GS-derived SLGC lines were analyzed for their responsiveness to RAR- and RXR-selective agonists. Inhibition of proliferation and initiation of differentiation were achieved with a RAR-selective pan-agonist in a subgroup of SLGC lines, whereas RXR-selective pan-agonists (rexinoids) supported proliferation in most SLGC lines. To decipher the RAR-dependent and RAR-independent effects of RXR, the genes encoding the RAR or RXR isotypes were functionally inactivated by CRISPR/Cas9-mediated editing in an IDH1-/p53-positive SLGC line with good responsiveness to RA. Stemness, differentiation capacity, and growth behavior were preserved after editing. Taken together, this manuscript provides evidence about the positive impact of RAR-independent RXR signaling on proliferation, survival, and tumor metabolism in SLGCs.


Assuntos
Glioma , Receptores do Ácido Retinoico , Adulto , Humanos , Receptores do Ácido Retinoico/metabolismo , Retinoides/farmacologia , Tretinoína/farmacologia , Receptores X de Retinoides , Glioma/genética , Células-Tronco/metabolismo
6.
Sci Rep ; 13(1): 15049, 2023 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-37700001

RESUMO

This paper expands the current state of knowledge on impact of retinoids on redox status of cytochrome c in cancers. Little is known how the expression of cytochromes may influence the development of cancers. We studied the effect of the redox status of the central iron ion in heme of cytochrome c. We determined the redox status of the iron ion in cytochrome c in mitochondria, cytoplasm, lipid droplets, and endoplasmic reticulum of the human breast cancer cells by Raman imaging. We incubated human breast adenocarcinoma cells (SK-BR-3) with retinoic acid, retinol and retinyl ester (palmitate) at concentration of 50 µM for 24 h. We recorded the Raman spectra and images of human breast cancer in vitro SK-BR-3 cells receiving redox stimuli by retinoic acid, retinol and retinyl ester (palmitate). The paper provides evidence that retinoic acid and retinol are pivotally important for mitochondrial energy homeostasis by controlling the redox status of cytochrome c in the electron transport chain controlling oxidative phosphorylation and apoptosis. We discussed the role of retinoids in metabolism and signaling of cancer cells. The paper provides experimental support for theoretical hypothesis how retinoic acid/retinol catalyse resonance energy transfer reactions and controls the activation/inactivation cycle of protein kinase PKCδ.


Assuntos
Neoplasias da Mama , Retinoides , Humanos , Feminino , Retinoides/farmacologia , Citocromos c , Vitamina A/farmacologia , Ésteres de Retinil , Tretinoína/farmacologia , Oxirredução , Retículo Endoplasmático , Ferro
7.
Toxicon ; 233: 107230, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37517594

RESUMO

Besides neuronal cells, botulinum neurotoxins (BoNTs) can also affect other cell types such as fibroblasts or keratinocytes. These cells play a key role in skin conditions. Maintaining a high-quality sebum secretion is essential to avoid premature aging. This study explored the effect of abobotulinumtoxinA (aboBoNT-A) in the rhino mouse. Briefly, anaesthetized animals were injected via the intra-dermal route (ID; four sites of injection) by either vehicle or 0.1, 0.3 and 1 Unit aboBoNT-A per mouse. A reference group was administered with adapalene gel 0.1% (daily local application) for 15 days. Adapalene is a third-generation retinoid and is used as first-line treatment of moderate acne. The body weight and the thickness of the dorsal skin were measured on days 1, 5, 10 and 15; erythema and scaling were recorded at the same time. On day 15, animals were ethically euthanized and skin samples were collected for histology, ELISA and lipidomic assays. AboBoNT-A administered ID at the doses 0.1 U and 0.3 U per mouse was well tolerated. 1 U aboBoNT-A (per mouse) induced a transient loss of muscle tone associated with a slight body weight loss after which mice recovered a good health status. AboBoNT-A did not show any significant effect on utricles surface area but induced a significant anti-inflammatory effect on dermis at the two highest doses. Moreover, aboBoNT-A showed neither side effects commonly observed with local retinoids, nor hyperplasia or dermis inflammation. No change in skin Interleukin-1alpha (IL-1α) cytokine levels was evidenced with aboBoNT-A, whereas a dose-dependent increase of substance P (SP) concentration in the skin was recorded, suggesting that aboBoNT-A induces neuropeptide accumulation in tissue by inhibiting exocytosis mechanisms. Lipidomic analysis showed that aboBoNT-A significantly increased the sebum concentration of several lipid species, presenting skin protecting properties. Overall, these data suggest that ID aboBoNT-A has skin rejuvenation, anti-inflammatory and moisture-boosting properties.


Assuntos
Toxinas Botulínicas Tipo A , Sebo , Camundongos , Animais , Pele , Toxinas Botulínicas Tipo A/toxicidade , Toxinas Botulínicas Tipo A/uso terapêutico , Retinoides/farmacologia , Adapaleno/farmacologia
8.
Adv Exp Med Biol ; 1415: 15-20, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37440008

RESUMO

Lutein (L), zeaxanthin (Z), and meso-zeaxanthin (MZ) are the three macular pigments (MP) carotenoids that uniquely accumulate in the macula lutea region of the human retina. L and Z are obtained by humans through dietary intake. The third MP, MZ, is rarely present in diet, and its abundance in the human fovea is due to the metabolic conversion of dietary L by the retinal pigment epithelium's RPE65 enzyme. The major functions of MP in ocular health are to filter high-intensity, phototoxic blue light and to act as effective antioxidants for scavenging free radicals. The pyridinium bisretinoid, N-retinylidene-N-retinylethanolamine (A2E), contributes to drusen formation in dry age-related macular degeneration (AMD) and to the autofluorescent flecks in autosomal recessive Stargardt disease (STGD1). Retinal carotenoids attenuate A2E formation and can directly and indirectly alleviate A2E-mediated oxidative damage. In this chapter, we review these more recently recognized interconnections between MP carotenoids and A2E bisretinoids.


Assuntos
Macula Lutea , Degeneração Macular , Pigmento Macular , Humanos , Luteína , Degeneração Macular/genética , Degeneração Macular/metabolismo , Pigmento Macular/metabolismo , Retina/metabolismo , Retinoides/farmacologia
9.
J Med Chem ; 66(12): 8140-8158, 2023 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-37279401

RESUMO

In the eye, the isomerization of all-trans-retinal to 11-cis-retinal is accomplished by a metabolic pathway termed the visual cycle that is critical for vision. RPE65 is the essential trans-cis isomerase of this pathway. Emixustat, a retinoid-mimetic RPE65 inhibitor, was developed as a therapeutic visual cycle modulator and used for the treatment of retinopathies. However, pharmacokinetic liabilities limit its further development including: (1) metabolic deamination of the γ-amino-α-aryl alcohol, which mediates targeted RPE65 inhibition, and (2) unwanted long-lasting RPE65 inhibition. We sought to address these issues by more broadly defining the structure-activity relationships of the RPE65 recognition motif via the synthesis of a family of novel derivatives, which were tested in vitro and in vivo for RPE65 inhibition. We identified a potent secondary amine derivative with resistance to deamination and preserved RPE65 inhibitory activity. Our data provide insights into activity-preserving modifications of the emixustat molecule that can be employed to tune its pharmacological properties.


Assuntos
Propanolaminas , Retinoides , Retinoides/farmacologia , Retinoides/metabolismo , Éteres Fenílicos/farmacologia , Visão Ocular , Retinaldeído/metabolismo , Proteínas do Olho
10.
Arch Biochem Biophys ; 743: 109669, 2023 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-37356607

RESUMO

Cytochrome P450 (P450, CYP) 27C1 is expressed in human skin and catalyzes the 3,4-desaturation of retinoids. The enzyme has a relatively high specificity constant (kcat/Km), and ∼» of the retinoids in human skin are in the desaturated form but their function is unknown. 3,4-Dehydroretinoic acid (also didehydroretinoic acid, ddRA) has similar affinity as all-trans retinoic acid (atRA) for retinoid X and retinoic acid receptors (RXRs/RAR). The metabolism of ddRA is unknown, and we considered the hypothesis that desaturation might be a protective mechanism in maintaining active retinoid levels in the body. There are limited theoretical products that can result from ddRA oxidation. We optimized conditions for oxidation of atRA by human liver microsomes-a slow loss of atRA was seen due to 4-oxidation but no loss of ddRA was observed under the same conditions. We evaluated the HPLC peaks that were observed in microsomal incubations with ddRA using UV spectroscopy, NaBH4 and NaBD4 reduction, and mass spectrometry. None were potential ddRA oxidation products, and none were increased in the presence of the P450 cofactor NADPH. Known P450 inhibitors had no effects on the levels of these compounds. We conclude that ddRA is not readily oxidized by P450s and that one role of desaturation may be the maintenance of levels of functional retinoids.


Assuntos
Retinoides , Tretinoína , Humanos , Tretinoína/metabolismo , Retinoides/metabolismo , Retinoides/farmacologia , Receptores do Ácido Retinoico/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Microssomos Hepáticos/metabolismo
11.
Methods Mol Biol ; 2650: 53-61, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37310623

RESUMO

The intestine consists of epithelial cells surrounded by a complex environment as mesenchymal cells and the gut microbiota. With its impressive stem cell regeneration capability, the intestine is able to constantly replenish cells lost through apoptosis or abrasion by food passing through. Over the past decade, researchers have identified signaling pathways involved in stem cell homeostasis such as retinoids pathway. Retinoids are also involved in cell differentiation of healthy and cancer cells. In this study, we describe several approaches in vitro and in vivo to further investigate the effect of retinoids on stem cells, progenitors, and differentiated intestinal cells.


Assuntos
Apoptose , Bioensaio , Diferenciação Celular , Intestinos , Retinoides/farmacologia
12.
Int J Mol Sci ; 24(11)2023 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-37298605

RESUMO

Retinoids are a frequently used class of drugs in the treatment of inflammatory as well as malignant skin diseases. Retinoids have differential affinity for the retinoic acid receptor (RAR) and/or the retinoid X receptor (RXR). The endogenous dual RAR and RXR agonist alitretinoin (9-cis retinoic acid) demonstrated remarkable efficacy in the treatment of chronic hand eczema (CHE) patients; however, detailed information on the mechanisms of action remains elusive. Here, we used CHE as a model disease to unravel immunomodulatory pathways following retinoid receptor signaling. Transcriptome analyses of skin specimens from alitretinoin-responder CHE patients identified 231 significantly regulated genes. Bioinformatic analyses indicated keratinocytes as well as antigen presenting cells as cellular targets of alitretinoin. In keratinocytes, alitretinoin interfered with inflammation-associated barrier gene dysregulation as well as antimicrobial peptide induction while markedly inducing hyaluronan synthases without affecting hyaluronidase expression. In monocyte-derived dendritic cells, alitretinoin induced distinct morphological and phenotypic characteristics with low co-stimulatory molecule expression (CD80 and CD86), the increased secretion of IL-10 and the upregulation of the ecto-5'-nucleotidase CD73 mimicking immunomodulatory or tolerogenic dendritic cells. Indeed, alitretinoin-treated dendritic cells demonstrated a significantly reduced capacity to activate T cells in mixed leukocyte reactions. In a direct comparison, alitretinoin-mediated effects were significantly stronger than those observed for the RAR agonist acitretin. Moreover, longitudinal monitoring of alitretinoin-responder CHE patients could confirm in vitro findings. Taken together, we demonstrate that the dual RAR and RXR agonist alitretinoin targets epidermal dysregulation and demonstrates strong immunomodulatory effects on antigen presenting cell functions.


Assuntos
Retinoides , Tretinoína , Humanos , Alitretinoína , Retinoides/farmacologia , Tretinoína/farmacologia , Receptores do Ácido Retinoico/metabolismo , Receptores X de Retinoides , Células Apresentadoras de Antígenos/metabolismo
13.
Curr Microbiol ; 80(7): 230, 2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37256372

RESUMO

Methicillin-resistant Staphylococcus aureus (MRSA) poses a great threat to human health, and the formation of biofilm and persister cells make the situation even worse. Drug repurposing is an effective way to solve this problem by shortening the drug development times and reducing the research costs. In this study, CD5789 (trifarotene), a fourth-generation retinoid to be approved by the FDA in 2019 for the topical acne vulgaris regimens, was exhibited antimicrobial activity against MRSA type strains and its clinical isolates with the minimal concentration (MIC) of 2-4 µg/mL and 4-16 µg/mL, respectively, in a dose-dependent manner. By crystal violet staining, we found that CD5789 could inhibit the biofilm formation by MRSA and could further eradicate the pre-formed biofilm at the concentration of 8 µg/mL. By checkerboard dilution assay, sub-MIC of CD5789 showed synergistic antimicrobial effects with sub-MIC of gentamycin against MRSA type strains as well as clinical isolates. In addition, CD5789 also exhibited effective bactericidal activity against MRSA persister cells at the concentration of 8 ~ 16 µg/mL. Extremely low cytotoxicity of CD5789 was observed by CCK-8 assay indicated the well tolerability to human body. In all, CD5789 has the potential to be an alternative for the treatment of refractory MRSA-related infections.


Assuntos
Anti-Infecciosos , Staphylococcus aureus Resistente à Meticilina , Humanos , Reposicionamento de Medicamentos , Anti-Infecciosos/farmacologia , Retinoides/farmacologia , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia
14.
Int J Mol Sci ; 24(7)2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-37047648

RESUMO

The seeds of Cassia tora (C. tora) species mainly contain anthraquinone, anthraquinone glycoside, and naphthalene derivatives. We investigated the anti-apoptotic effects of C. tora seed extract and its isolated compounds on blue-light-induced lipofuscin (A2E)-loaded human retinal pigment epithelial (RPE) cells. For analysis of the C. tora extract, high-performance liquid chromatography method was used. A2E-loaded human retinal pigment epithelial cells and blue light were used to create excessive photo-oxidation to induce cell death. Lactate dehydrogenase (LDH) assay was used to measure cell cytotoxicity, and the mRNA expression of genes involved in apoptosis was examined to evaluate the mechanism of cell death. C. tora extract, n-hexane fraction, and chrysophanol were found to inhibit apoptotic cell death. Additionally, C. tora extract, n-hexane fraction, and chrysophanol reduced the mRNA expression of genes involved in the apoptosis pathway. C. tora and chrysophanol were considered to inhibit apoptosis and oxidative stress response. The major component of C. tora has a protective effect against apoptosis. The ingredients of C. tora can be used as therapeutic substances or to prevent diseases caused by the excessive oxidation of A2E substances in the retina, such as in age-related macular degeneration.


Assuntos
Cassia , Humanos , Cassia/genética , Antraquinonas/farmacologia , Antraquinonas/metabolismo , Luz , Extratos Vegetais/química , Pigmentos da Retina/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Células Epiteliais/metabolismo , Sementes/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Retinoides/farmacologia
15.
Bioorg Med Chem ; 82: 117214, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36913882

RESUMO

Retinoic acid (RA, 1), an oxidized form of vitamin A, binds to retinoic acid receptors (RAR) and retinoid X receptors (RXR) to regulate gene expression and has important functions such as cell proliferation and differentiation. Synthetic ligands regarding RAR and RXR have been devised for the treatment of various diseases, particularly promyelocytic leukemia, but their side effects have led to the development of new, less toxic therapeutic agents. Fenretinide (4-HPR, 2), an aminophenol derivative of RA, exhibits potent antiproliferative activity without binding to RAR/RXR, but its clinical trial was discontinued due to side effects of impaired dark adaptation. Assuming that the cyclohexene ring of 4-HPR is the cause of the side effects, methylaminophenol was discovered through structure-activity relationship research, and p-dodecylaminophenol (p-DDAP, 3), which has no side effects or toxicity and is effective against a wide range of cancers, was developed. Therefore, we thought that introducing the motif carboxylic acid found in retinoids, could potentially enhance the anti-proliferative effects. Introducing chain terminal carboxylic functionality into potent p-alkylaminophenols significantly attenuated antiproliferative potencies, while a similar structural modification of weakly potent p-acylaminophenols enhanced growth inhibitory potencies. However, conversion of the carboxylic acid moieties to their methyl esters completely abolished the cell growth inhibitory effects of both series. Insertion of a carboxylic acid moiety, which is important for binding to RA receptors, abolishes the action of p-alkylaminophenols, but enhances the action of p-acylaminophenols. This suggests that the amido functionality may be important for the growth inhibitory effects of the carboxylic acids.


Assuntos
Antineoplásicos , Fenretinida , Retinoides/farmacologia , Retinoides/química , Aminofenóis , Antineoplásicos/farmacologia , Tretinoína/farmacologia , Receptores X de Retinoides
16.
Int J Mol Sci ; 24(6)2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36982372

RESUMO

9'-cis-norbixin (norbixin/BIO201) protects RPE cells against phototoxicity induced by blue light and N-retinylidene-N-retinylethanolamine (A2E) in vitro and preserves visual functions in animal models of age-related macular degeneration (AMD) in vivo. The purpose of this study was to examine the mode of action and the in vitro and in vivo effects of BIO203, a novel norbixin amide conjugate. Compared to norbixin, BIO203 displays improved stability at all temperatures tested for up to 18 months. In vitro, BIO203 and norbixin share a similar mode of action involving the inhibition of PPARs, NF-κB, and AP-1 transactivations. The two compounds also reduce IL-6, IL-8, and VEGF expression induced by A2E. In vivo, ocular maximal concentration and BIO203 plasma exposure are increased compared to those of norbixin. Moreover, BIO203 administered systemically protects visual functions and retinal structure in albino rats subjected to blue-light illumination and in the retinal degeneration model of Abca4-/- Rdh8-/- double knock-out mice following 6 months of oral complementation. In conclusion, we report here that BIO203 and norbixin share similar modes of action and protective effects in vitro and in vivo. BIO203, with its improved pharmacokinetic and stability properties, could be developed for the treatment of retinal degenerative diseases such as AMD.


Assuntos
Degeneração Macular , Degeneração Retiniana , Animais , Camundongos , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Anti-Inflamatórios/metabolismo , Transportadores de Cassetes de Ligação de ATP/metabolismo , Carotenoides/metabolismo , Degeneração Macular/tratamento farmacológico , Degeneração Macular/metabolismo , Degeneração Retiniana/tratamento farmacológico , Degeneração Retiniana/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Retinoides/farmacologia , Ratos
17.
Bioorg Med Chem Lett ; 85: 129212, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36871703

RESUMO

Recently, retinoid actions on the central nervous system (CNS) have attracted considerable attention from the perspectives of brain disease diagnosis and drug development. Firstly, we successfully synthesized [11C]peretinoin esters (methyl, ethyl, and benzyl) using a Pd(0)-mediated rapid C-[11C]methylation of the corresponding stannyl precursors without geometrical isomerization in 82%, 66%, and 57% radiochemical yields (RCYs). Subsequent hydrolysis of the 11C-labeled ester produced [11C]peretinoin in 13 ± 8% RCY (n = 3). After pharmaceutical formulation, the resulting [11C]benzyl ester and [11C]peretinoin had high radiochemical purity (>99% each) and molar activities of 144 and 118 ± 49 GBq µmol-1 at total synthesis times of 31 min and 40 ± 3 min, respectively. Rat brain PET imaging for the [11C]ester revealed a unique time-radioactivity curve, suggesting the participation of the acid [11C]peretinoin for the brain permeability. However, the curve of the [11C]peretinoin rose steadily after a shorter time lag to reach 1.4 standardized uptake value (SUV) at 60 min. These various phenomena between the ester and acid became more pronounced in the monkey brain (SUV of > 3.0 at 90 min). With the opportunity to identify high brain uptake of [11C]peretinoin, we discovered CNS activities of a drug candidate called peretinoin, such as the induction of a stem-cell to neuronal cell differentiation and the suppression of neuronal damages.


Assuntos
Antineoplásicos , Retinoides , Ratos , Animais , Metilação , Retinoides/farmacologia , Antineoplásicos/farmacologia , Encéfalo/diagnóstico por imagem , Tomografia por Emissão de Pósitrons , Compostos Radiofarmacêuticos/farmacologia
18.
Toxicology ; 487: 153461, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36805303

RESUMO

Cyanobacterial blooms are known sources of environmentally-occurring retinoid compounds, including all-trans and 9-cis retinoic acids (RAs). The developmental hazard for aquatic organisms has been described, while the implications for human health hazard assessment are not yet sufficiently characterized. Here, we employ a human neural stem cell model that can differentiate in vitro into a mixed culture of neurons and glia. Cells were exposed to non-cytotoxic 8-1000 nM all-trans or 9-cis RA for 9-18 days (DIV13 and DIV22, respectively). Impact on biomarkers was analyzed on gene expression (RT-qPCR) and protein level (western blot and proteomics) at both time points; network patterning (immunofluorescence) on DIV22. RA exposure significantly concentration-dependently increased gene expression of retinoic acid receptors and the metabolizing enzyme CYP26A1, confirming the chemical-specific response of the model. Expression of thyroid hormone signaling-related genes remained mostly unchanged. Markers of neural progenitors/stem cells (PAX6, SOX1, SOX2, NESTIN) were decreased with increasing RA concentrations, though a basal population remained. Neural markers (DCX, TUJ1, MAP2, NeuN, SYP) remained unchanged or were decreased at high concentrations (200-1000 nM). Conversely, (astro-)glial marker S100ß was increased concentration-dependently on DIV22. Together, the biomarker analysis indicates an RA-dependent promotion of glial cell fates over neural differentiation, despite the increased abundance of neural protein biomarkers during differentiation. Interestingly, RA exposure induced substantial changes to the cell culture morphology: while low concentrations resulted in a network-like differentiation pattern, high concentrations (200-1000 nM RA) almost completely prevented such network patterning. After functional confirmation for implications in network function, such morphological features could present a proxy for network formation assessment, an apical key event in (neuro-)developmental Adverse Outcome Pathways. The described application of a human in vitro model for (developmental) neurotoxicity to emerging environmentally-relevant retinoids contributes to the evidence-base for the use of differentiating human in vitro models for human health hazard and risk assessment.


Assuntos
Alitretinoína , Células-Tronco Neurais , Tretinoína , Humanos , Alitretinoína/toxicidade , Diferenciação Celular , Células-Tronco Neurais/efeitos dos fármacos , Receptores do Ácido Retinoico/genética , Receptores do Ácido Retinoico/metabolismo , Retinoides/farmacologia , Tretinoína/toxicidade
19.
Fundam Clin Pharmacol ; 37(3): 557-565, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36690337

RESUMO

Chemotherapy with targeted drugs is the first line therapy option for acute and chronic myeloid leukemia. However, hematopoietic stem cell transplantation may be used in high-risk patients or patients with failed responses to chemo drugs. Discovery and development of more effective new agents with lower side effects is the main aim of leukemia treatment. In this study, a novel retinoid compound with tetrahydronaphthalene ring was synthesized and evaluated for anticancer activity in human chronic and acute myeloid leukemia cell lines K562 and HL-60. Novel N-(1H-indol-1-yl)-5,5,8,8-tetramethyl-5,6,7,8-tetrahydronaphthalene-2-carboxamide was synthesized based on molecular hybridization of the two different bioactive structures retinoid head and indole. The effects of the synthesized carboxamide compound, which was referred to as compound 5, were determined in K562 chronic myeloid leukemia and HL-60 acute myeloid leukemia cell lines and L929 fibroblast cell line, which served as a control. Colorimetric MTT and caspase3 activity tests, flow cytometry, western blot, and microscopic examinations were used to evaluate biological activity. Compound 5 more effectively induced cell death in HL60 cells in comparison to K562 cells and L929 fibroblast cells. Therefore, further mechanism of cell death was investigated in HL60 cell line. It was found that compound 5 induced remarkable cytotoxicity, caspase3 activation, and PARP fragmentation in HL60 cells. Flow cytometric staining showed that the percentage of cells arrested in G0/G1 was also increased with compound 5 treatment. Important modulator proteins of cell proliferation p-ERK, p-AKT, and p-m-TOR were also found to be inhibited with compound 5 treatment. Collectively, our results reveal compound 5, which is a novel indole retinoid compound as a potential active agent for the treatment of acute promyelocytic leukemia.


Assuntos
Leucemia Mielogênica Crônica BCR-ABL Positiva , Leucemia Mieloide Aguda , Humanos , Células HL-60 , Proteínas Proto-Oncogênicas c-akt , Retinoides/farmacologia , Apoptose , Pontos de Checagem do Ciclo Celular , Proliferação de Células , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Indóis/farmacologia , Tetra-Hidronaftalenos/farmacologia
20.
J Cosmet Dermatol ; 22(5): 1658-1669, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36718827

RESUMO

BACKGROUND: Retinoid signaling is an important regulator of the epidermis and skin appendages. Therefore, synthetic retinoids have been developed for therapeutic use for skin disorders such as psoriasis and acne. AIMS: In previous studies, we showed how the photostable retinoid EC23 induces neuronal differentiation in stem cell-like cell populations, and here, we aim to investigate its ability to influence epidermal and hair follicle growth. METHODS: EC23 influence on skin biology was investigated initially in cultures of monolayer keratinocytes and three-dimentional in vitro models of skin, and finally in in vivo studies of mice back skin. RESULTS: EC23 induces keratinocyte hyperproliferation in vitro and in vivo, and when applied to mouse skin increases the number of involucrin-positive suprabasal cell layers. These phenotypic changes are similar in skin treated with the natural retinoid all-trans retinoic acid (ATRA); however, EC23 is more potent; a tenfold lower dose of EC23 is sufficient to induce epidermal thickening, and resulting hyperproliferation is sustained for a longer time period after first dose. EC23 treatment resulted in a disorganized stratum corneum, reduced cell surface lipids and compromised barrier, similar to ATRA treatment. However, EC23 induces a rapid telogen to anagen transition and hair re-growth in 6-week-old mice with synchronously resting back skin follicles. The impact of EC23 on the hair cycle was surprising as similar results have not been seen with ATRA. CONCLUSIONS: These data suggest that synthetic retinoid EC23 is a useful tool in exploring the turnover and differentiation of cells and has a potent effect on skin physiology.


Assuntos
Folículo Piloso , Retinoides , Camundongos , Animais , Retinoides/farmacologia , Epiderme , Tretinoína/farmacologia , Queratinócitos/metabolismo , Diferenciação Celular , Proliferação de Células
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...